3.552 \(\int (d+c d x)^{5/2} (e-c e x)^{5/2} (a+b \sin ^{-1}(c x))^2 \, dx\)

Optimal. Leaf size=502 \[ \frac{5 (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^3}{48 b c \left (1-c^2 x^2\right )^{5/2}}+\frac{5 x (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{24 \left (1-c^2 x^2\right )}+\frac{5 x (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 \left (1-c^2 x^2\right )^2}+\frac{b \sqrt{1-c^2 x^2} (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{18 c}+\frac{5 b (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{48 c \sqrt{1-c^2 x^2}}-\frac{5 b c x^2 (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{16 \left (1-c^2 x^2\right )^{5/2}}+\frac{1}{6} x (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2-\frac{65 b^2 x (c d x+d)^{5/2} (e-c e x)^{5/2}}{1728 \left (1-c^2 x^2\right )}-\frac{245 b^2 x (c d x+d)^{5/2} (e-c e x)^{5/2}}{1152 \left (1-c^2 x^2\right )^2}+\frac{115 b^2 (c d x+d)^{5/2} (e-c e x)^{5/2} \sin ^{-1}(c x)}{1152 c \left (1-c^2 x^2\right )^{5/2}}-\frac{1}{108} b^2 x (c d x+d)^{5/2} (e-c e x)^{5/2} \]

[Out]

-(b^2*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2))/108 - (245*b^2*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2))/(1152*(1 -
c^2*x^2)^2) - (65*b^2*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2))/(1728*(1 - c^2*x^2)) + (115*b^2*(d + c*d*x)^(5/2)
*(e - c*e*x)^(5/2)*ArcSin[c*x])/(1152*c*(1 - c^2*x^2)^(5/2)) - (5*b*c*x^2*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*
(a + b*ArcSin[c*x]))/(16*(1 - c^2*x^2)^(5/2)) + (5*b*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x]))/
(48*c*Sqrt[1 - c^2*x^2]) + (b*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(18*c
) + (x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2)/6 + (5*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)
*(a + b*ArcSin[c*x])^2)/(16*(1 - c^2*x^2)^2) + (5*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2)
/(24*(1 - c^2*x^2)) + (5*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^3)/(48*b*c*(1 - c^2*x^2)^(5/2
))

________________________________________________________________________________________

Rubi [A]  time = 0.567899, antiderivative size = 502, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 9, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.281, Rules used = {4673, 4649, 4647, 4641, 4627, 321, 216, 4677, 195} \[ \frac{5 (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^3}{48 b c \left (1-c^2 x^2\right )^{5/2}}+\frac{5 x (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{24 \left (1-c^2 x^2\right )}+\frac{5 x (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 \left (1-c^2 x^2\right )^2}+\frac{b \sqrt{1-c^2 x^2} (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{18 c}+\frac{5 b (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{48 c \sqrt{1-c^2 x^2}}-\frac{5 b c x^2 (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{16 \left (1-c^2 x^2\right )^{5/2}}+\frac{1}{6} x (c d x+d)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2-\frac{65 b^2 x (c d x+d)^{5/2} (e-c e x)^{5/2}}{1728 \left (1-c^2 x^2\right )}-\frac{245 b^2 x (c d x+d)^{5/2} (e-c e x)^{5/2}}{1152 \left (1-c^2 x^2\right )^2}+\frac{115 b^2 (c d x+d)^{5/2} (e-c e x)^{5/2} \sin ^{-1}(c x)}{1152 c \left (1-c^2 x^2\right )^{5/2}}-\frac{1}{108} b^2 x (c d x+d)^{5/2} (e-c e x)^{5/2} \]

Antiderivative was successfully verified.

[In]

Int[(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2,x]

[Out]

-(b^2*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2))/108 - (245*b^2*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2))/(1152*(1 -
c^2*x^2)^2) - (65*b^2*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2))/(1728*(1 - c^2*x^2)) + (115*b^2*(d + c*d*x)^(5/2)
*(e - c*e*x)^(5/2)*ArcSin[c*x])/(1152*c*(1 - c^2*x^2)^(5/2)) - (5*b*c*x^2*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*
(a + b*ArcSin[c*x]))/(16*(1 - c^2*x^2)^(5/2)) + (5*b*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x]))/
(48*c*Sqrt[1 - c^2*x^2]) + (b*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(18*c
) + (x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2)/6 + (5*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)
*(a + b*ArcSin[c*x])^2)/(16*(1 - c^2*x^2)^2) + (5*x*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2)
/(24*(1 - c^2*x^2)) + (5*(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^3)/(48*b*c*(1 - c^2*x^2)^(5/2
))

Rule 4673

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> D
ist[((d + e*x)^q*(f + g*x)^q)/(1 - c^2*x^2)^q, Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q]
 && GeQ[p - q, 0]

Rule 4649

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(x*(d + e*x^2)^p*(
a + b*ArcSin[c*x])^n)/(2*p + 1), x] + (Dist[(2*d*p)/(2*p + 1), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n,
x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/((2*p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[x*(1 - c
^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Gt
Q[n, 0] && GtQ[p, 0]

Rule 4647

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*(
a + b*ArcSin[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 - c^2*x^2]), Int[(a + b*ArcSin[c*x])^n/Sqrt[1 -
c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 - c^2*x^2]), Int[x*(a + b*ArcSin[c*x])^(n - 1), x],
x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rubi steps

\begin{align*} \int (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx &=\frac{\left ((d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \left (1-c^2 x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx}{\left (1-c^2 x^2\right )^{5/2}}\\ &=\frac{1}{6} x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\left (5 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \left (1-c^2 x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx}{6 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (b c (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int x \left (1-c^2 x^2\right )^2 \left (a+b \sin ^{-1}(c x)\right ) \, dx}{3 \left (1-c^2 x^2\right )^{5/2}}\\ &=\frac{b (d+c d x)^{5/2} (e-c e x)^{5/2} \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{18 c}+\frac{1}{6} x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{24 \left (1-c^2 x^2\right )}+\frac{\left (5 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx}{8 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \left (1-c^2 x^2\right )^{5/2} \, dx}{18 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b c (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right ) \, dx}{12 \left (1-c^2 x^2\right )^{5/2}}\\ &=-\frac{1}{108} b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}+\frac{5 b (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{48 c \sqrt{1-c^2 x^2}}+\frac{b (d+c d x)^{5/2} (e-c e x)^{5/2} \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{18 c}+\frac{1}{6} x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 \left (1-c^2 x^2\right )^2}+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{24 \left (1-c^2 x^2\right )}+\frac{\left (5 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{1-c^2 x^2}} \, dx}{16 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \left (1-c^2 x^2\right )^{3/2} \, dx}{108 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \left (1-c^2 x^2\right )^{3/2} \, dx}{48 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b c (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{8 \left (1-c^2 x^2\right )^{5/2}}\\ &=-\frac{1}{108} b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}-\frac{65 b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}}{1728 \left (1-c^2 x^2\right )}-\frac{5 b c x^2 (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{16 \left (1-c^2 x^2\right )^{5/2}}+\frac{5 b (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{48 c \sqrt{1-c^2 x^2}}+\frac{b (d+c d x)^{5/2} (e-c e x)^{5/2} \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{18 c}+\frac{1}{6} x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 \left (1-c^2 x^2\right )^2}+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{24 \left (1-c^2 x^2\right )}+\frac{5 (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^3}{48 b c \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \sqrt{1-c^2 x^2} \, dx}{144 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \sqrt{1-c^2 x^2} \, dx}{64 \left (1-c^2 x^2\right )^{5/2}}+\frac{\left (5 b^2 c^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \frac{x^2}{\sqrt{1-c^2 x^2}} \, dx}{16 \left (1-c^2 x^2\right )^{5/2}}\\ &=-\frac{1}{108} b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}-\frac{245 b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}}{1152 \left (1-c^2 x^2\right )^2}-\frac{65 b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}}{1728 \left (1-c^2 x^2\right )}-\frac{5 b c x^2 (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{16 \left (1-c^2 x^2\right )^{5/2}}+\frac{5 b (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{48 c \sqrt{1-c^2 x^2}}+\frac{b (d+c d x)^{5/2} (e-c e x)^{5/2} \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{18 c}+\frac{1}{6} x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 \left (1-c^2 x^2\right )^2}+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{24 \left (1-c^2 x^2\right )}+\frac{5 (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^3}{48 b c \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{288 \left (1-c^2 x^2\right )^{5/2}}-\frac{\left (5 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{128 \left (1-c^2 x^2\right )^{5/2}}+\frac{\left (5 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{32 \left (1-c^2 x^2\right )^{5/2}}\\ &=-\frac{1}{108} b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}-\frac{245 b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}}{1152 \left (1-c^2 x^2\right )^2}-\frac{65 b^2 x (d+c d x)^{5/2} (e-c e x)^{5/2}}{1728 \left (1-c^2 x^2\right )}+\frac{115 b^2 (d+c d x)^{5/2} (e-c e x)^{5/2} \sin ^{-1}(c x)}{1152 c \left (1-c^2 x^2\right )^{5/2}}-\frac{5 b c x^2 (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{16 \left (1-c^2 x^2\right )^{5/2}}+\frac{5 b (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{48 c \sqrt{1-c^2 x^2}}+\frac{b (d+c d x)^{5/2} (e-c e x)^{5/2} \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{18 c}+\frac{1}{6} x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{16 \left (1-c^2 x^2\right )^2}+\frac{5 x (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^2}{24 \left (1-c^2 x^2\right )}+\frac{5 (d+c d x)^{5/2} (e-c e x)^{5/2} \left (a+b \sin ^{-1}(c x)\right )^3}{48 b c \left (1-c^2 x^2\right )^{5/2}}\\ \end{align*}

Mathematica [A]  time = 2.83636, size = 450, normalized size = 0.9 \[ \frac{d^2 e^2 \left (\sqrt{c d x+d} \sqrt{e-c e x} \left (2304 a^2 c^5 x^5 \sqrt{1-c^2 x^2}-7488 a^2 c^3 x^3 \sqrt{1-c^2 x^2}+9504 a^2 c x \sqrt{1-c^2 x^2}+3240 a b \cos \left (2 \sin ^{-1}(c x)\right )+324 a b \cos \left (4 \sin ^{-1}(c x)\right )+24 a b \cos \left (6 \sin ^{-1}(c x)\right )-1620 b^2 \sin \left (2 \sin ^{-1}(c x)\right )-81 b^2 \sin \left (4 \sin ^{-1}(c x)\right )-4 b^2 \sin \left (6 \sin ^{-1}(c x)\right )\right )-4320 a^2 \sqrt{d} \sqrt{e} \sqrt{1-c^2 x^2} \tan ^{-1}\left (\frac{c x \sqrt{c d x+d} \sqrt{e-c e x}}{\sqrt{d} \sqrt{e} \left (c^2 x^2-1\right )}\right )+72 b \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x)^2 \left (60 a+45 b \sin \left (2 \sin ^{-1}(c x)\right )+9 b \sin \left (4 \sin ^{-1}(c x)\right )+b \sin \left (6 \sin ^{-1}(c x)\right )\right )+12 b \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x) \left (540 a \sin \left (2 \sin ^{-1}(c x)\right )+108 a \sin \left (4 \sin ^{-1}(c x)\right )+12 a \sin \left (6 \sin ^{-1}(c x)\right )+270 b \cos \left (2 \sin ^{-1}(c x)\right )+27 b \cos \left (4 \sin ^{-1}(c x)\right )+2 b \cos \left (6 \sin ^{-1}(c x)\right )\right )+1440 b^2 \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x)^3\right )}{13824 c \sqrt{1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + c*d*x)^(5/2)*(e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2,x]

[Out]

(d^2*e^2*(1440*b^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^3 - 4320*a^2*Sqrt[d]*Sqrt[e]*Sqrt[1 - c^2*x^2]*
ArcTan[(c*x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/(Sqrt[d]*Sqrt[e]*(-1 + c^2*x^2))] + 12*b*Sqrt[d + c*d*x]*Sqrt[e -
 c*e*x]*ArcSin[c*x]*(270*b*Cos[2*ArcSin[c*x]] + 27*b*Cos[4*ArcSin[c*x]] + 2*b*Cos[6*ArcSin[c*x]] + 540*a*Sin[2
*ArcSin[c*x]] + 108*a*Sin[4*ArcSin[c*x]] + 12*a*Sin[6*ArcSin[c*x]]) + 72*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*Arc
Sin[c*x]^2*(60*a + 45*b*Sin[2*ArcSin[c*x]] + 9*b*Sin[4*ArcSin[c*x]] + b*Sin[6*ArcSin[c*x]]) + Sqrt[d + c*d*x]*
Sqrt[e - c*e*x]*(9504*a^2*c*x*Sqrt[1 - c^2*x^2] - 7488*a^2*c^3*x^3*Sqrt[1 - c^2*x^2] + 2304*a^2*c^5*x^5*Sqrt[1
 - c^2*x^2] + 3240*a*b*Cos[2*ArcSin[c*x]] + 324*a*b*Cos[4*ArcSin[c*x]] + 24*a*b*Cos[6*ArcSin[c*x]] - 1620*b^2*
Sin[2*ArcSin[c*x]] - 81*b^2*Sin[4*ArcSin[c*x]] - 4*b^2*Sin[6*ArcSin[c*x]])))/(13824*c*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.256, size = 0, normalized size = 0. \begin{align*} \int \left ( cdx+d \right ) ^{{\frac{5}{2}}} \left ( -cex+e \right ) ^{{\frac{5}{2}}} \left ( a+b\arcsin \left ( cx \right ) \right ) ^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*x+d)^(5/2)*(-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2,x)

[Out]

int((c*d*x+d)^(5/2)*(-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(5/2)*(-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a^{2} c^{4} d^{2} e^{2} x^{4} - 2 \, a^{2} c^{2} d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} +{\left (b^{2} c^{4} d^{2} e^{2} x^{4} - 2 \, b^{2} c^{2} d^{2} e^{2} x^{2} + b^{2} d^{2} e^{2}\right )} \arcsin \left (c x\right )^{2} + 2 \,{\left (a b c^{4} d^{2} e^{2} x^{4} - 2 \, a b c^{2} d^{2} e^{2} x^{2} + a b d^{2} e^{2}\right )} \arcsin \left (c x\right )\right )} \sqrt{c d x + d} \sqrt{-c e x + e}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(5/2)*(-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral((a^2*c^4*d^2*e^2*x^4 - 2*a^2*c^2*d^2*e^2*x^2 + a^2*d^2*e^2 + (b^2*c^4*d^2*e^2*x^4 - 2*b^2*c^2*d^2*e^2
*x^2 + b^2*d^2*e^2)*arcsin(c*x)^2 + 2*(a*b*c^4*d^2*e^2*x^4 - 2*a*b*c^2*d^2*e^2*x^2 + a*b*d^2*e^2)*arcsin(c*x))
*sqrt(c*d*x + d)*sqrt(-c*e*x + e), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)**(5/2)*(-c*e*x+e)**(5/2)*(a+b*asin(c*x))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c d x + d\right )}^{\frac{5}{2}}{\left (-c e x + e\right )}^{\frac{5}{2}}{\left (b \arcsin \left (c x\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(5/2)*(-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

integrate((c*d*x + d)^(5/2)*(-c*e*x + e)^(5/2)*(b*arcsin(c*x) + a)^2, x)